
1.0 Introduction USB2Any(v1.20)

USB 2.0 Full speed to I2C/SPI/GPIO/SPP/EPP/ADC/RS232(TTL)/JTAG adapter

USB2Any provides a simple solution to control various hardware devices with I2C, SPI, RS232(TTL), JTAG,
ADC, SPP/EPP, GPIO interfaces from your PC. Multiple commands can be easily packed into one USB
transaction frame(1 ms per frame), instead of one command per transaction as other similar product does, so
tremendous execution efficiency can be achieved by USB2Any.

1.1 Features:
● In a compact, rigid plastic cover with mini-B to DB25 interface connector.
● Provide a 3.3V/180mA power source to support user applications.
● Configurable I2C, SPI and RS232(TTL) bus clock frequency.
● One I2C master port, one SPI master port, one RS232 port in TTL level, one SPP/EPP parallel port,
 one JTAG port and two single-end analog input channels.
● Up to 23 user configurable pins which, through the ability of writing the SFR registers the USB2Any
 provided, can accomplish almost any function the C8051F320 can have, such as a 10 channel
 differential analog inputs AD converter with internal voltage reference.
● Flexible and powerful DLL software interface and plenty of examples with source files on read/write a LCD
 module, a 25 series flash device, a 24 series EEPROM and a CPLD JTAG interface.
● User can build his own device commands(a totally 10) to fit his hardware requirement more efficiently.
● Use gboot, a USB HID Bootloader (http://gglabs.us/node/3) for easy firmware update.

1.2 Device Command summary:
// General
CmdGetVer, CmdPowerOn, CmdPowerOff, CmdSFRRead, CmdSFRWrite,
CmdSetPWidth, CmdWaitN100uS, CmdSelEPP, CmdSelSPP, CmdSelSIO, CmdLoadReportN,
// SPI
CmdSPI0SetRate, CmdSPI0En, CmdSPI0Dis, CmdSPI0CS0_Byte, CmdSPI0CS1, CmdSPI0WriteN,
CmdSPI0ReadN, CmdWaitWIPL, CmdSPI0UnloadN, CmdSPI0ReadReportL,
// I2C
CmdSMB0SetRate, CmdSMB0En, CmdSMB0Dis, CmdSMB0Start, CmdSMB0ReStart, CmdSMB0Stop,
CmdSMB0NACKStop, CmdSMB0ReadN, CmdSMB0Read_NACK, CmdSMB0WriteN, CmdSMB0UnloadN,
CmdSMB0ReadReportL,
// SPP/EPP PORT I/O
CmdPBitSet, CmdPBitClr, CmdStbWrite, CmdStbWriteN, CmdDStbWrite, CmdDStbRead, CmdAStbWrite,
CmdAStbRead, CmdWaitBit0, CmdWaitBit1,
// JTAG
CmdJTAGReset, CmdTCK_TMS1, CmdTCK_TMS0, CmdTDI1, CmdTDI0, CmdTCKsL, CmdBitsRWExitL,
CmdBitsRWL,
// ADC
CmdADC0En, CmdADC0Dis, CmdADC0SetAMX, CmdADC0Get,
// RS232(TTL)
Cmd232SetBaud, Cmd232Init, Cmd232Read_Flag, Cmd232ReadN, Cmd232WriteN,
// For Power User
CmdUserReadPage, CmdUserWritePage, CmdUser0, CmdUser1, CmdUser2, CmdUser3, CmdUser4,
CmdUser5, CmdUser6, CmdUser7, CmdUser8, CmdUser9

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://gglabs.us/node/3)
http://www.pdffactory.com
http://www.pdffactory.com

2.0 USB2Any pin assignment:

SPP/EPP mode SIO mode Note7
P0.0(DB25.21) ODI SCK(SPI) Note4
P0.1(DB25.22) ODI MISO(SPI) Note4
P0.2(DB25.23) ODI MOSI(SPI) Note4
P0.3(DB25.15) nERROR, ODI NSS(SPI)
P0.4(DB25.24) SEL, ODI TX(RS232) Note4
P0.5(DB25.12) PE, ODI RX(RS232) Note9
P0.6(DB25.10) nACK, ODI SDA(I2C) Note6
P0.7(DB25.11) BUSY/WAIT, ODI SCL(I2C) Note5,6
P1.0(DB25.2) PD0, PP/ODI ODI
P1.1(DB25.3) PD1, PP/ODI ODI
P1.2(DB25.4) PD2, PP/ODI ODI
P1.3(DB25.5) PD3, PP/ODI ODI
P1.4(DB25.6) PD4, PP/ODI ODI
P1.5(DB25.7) PD5, PP/ODI ODI
P1.6(DB25.8) PD6, PP/ODI ODI
P1.7(DB25.9) PD7, PP/ODI ODI
P2.0(DB25.1) nSTB/nWrite, TCK(JTAG), PP Note5
P2.1(DB25.14) nAF/nDSTB, TDI(JTAG), PP Note5
P2.2(DB25.16) nINIT/nReset, TMS(JTAG), PP
P2.3(DB25.17) nSELIN/nASTB, TRST(JTAG), PP Note5
P2.4(DB25.18) ODI, TDO(JTAG) Note4
P2.5(DB25.19) ODI, AIN0(ADC) Note4
P2.6(DB25.20) ODI, AIN1(ADC) Note4
DB25.13 POWER Controllable 3.3V,

180mA power
DB25.25 GND
Note:

1. PP: Push-Pull, capable of drive -3mA/8.5mA at 2.6V/0.6V.
2. ODI: Open-Drain high output with weak pull-up(66KOhm min.). It acts as an input.
3. All port I/O pins are 5V tolerant,
4. These pins are defined as ground in a standard PC printer interface device. Care has be taken to avoid a

short condition when the USB2Any was plugged to a such device in the SIO mode. In SPP/EPP mode, it
is safe because they are set at OD state.

5. In SPP/EPP mode, this signal on the DB25 header is inverted from the data writ/read to the PC printer
port register. However it is not the case for the USB2Any, where they have the same polarity.

6. These two pins has to be pull-up externally by resistor 2.7K~5.6K to make the I2C works.
7. In SIO mode, the SPI is set to 4-wire single-master and CKPHA=CKPOL=0, the I2C is set to master.
8. The internal micro controller chip is a Silicon Laboratory's C8051F320. Please refer its data sheet for

more detailed information.
9. During power up, if P0.5 was short to ground, USB2Any will enter its boot loader so firmware can be

updated through the utility program “gflash_cli.exe” running in the DOS box.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

3.0 USB2Any User Interface:

The USB2Any device is of the USB 2.0 HID class that uses one IN report and one OUT report. Both
reports are 64 bytes in size.

Device commands are embedded in the COMMAND_REPORT and sent to the USB2Any. It is an OUT
report, start by two lead codes 0x5A and 0xA5, followed by the commands with or without parameters, and
ended with an end code 00. The valid command number(Cmd#) starts from value 0x01 and up.

COMMAND_REPORT(OUT) format:

 | Lead Codes | Command 1 |Command 2 |Command 3 |End Code | Not used area
0x5A 0xA5 Cmd# para1 Cmd# Cmd# 00

 |<-- 64 bytes -->|

The following example set the port bit P2.1 and read back the port P1. Its command report will looks like:

0x5A 0xA5 0x21 0xA1 0x03 0x90 00
 |Lead Code |CmdPBitSet |bit P2.1 |CmdSFRRead |P1 | End Code |

Each COMMAND_REPORT always has a STATUS_REPORT returned. It is an IN report with one lead
code 0xA5, followed by one status byte and then the read back data(if there is any). User should check the
status byte to see if this COMMAND_REPORT was executed correctly.

STATUS_REPORT(IN) format:

 |Lead Code|Status Byte|
0xA5 status Data, data ... ,

 |<-- 64 bytes --->|

The status byte has the following meanings:
bit7=1: an error has occur during the execution of COMMAND_REPORT.

 “bit[5:0] minus 1” is the offset location where the error occurs in the COMMAND_REPORT.
 Some possible errors are:
 1. Not a valid COMMAND_REPORT, the lead codes(0x5A, 0xA5) was missed.
 2. Not a valid command code(Cmd#) in the COMMAND_REPORT.
 3. CmdWaitWIPL command timeout error on waiting the WIP bit of a 25 series SPI flash devices.
 4. ACK signal fails on an I2C slave device.

 5. 10ms timeout error.
 bit7=0: Successful

 Data returned in the STATUS_REPORT starts from the third byte. If there are multiple commands in one
COMMAND_REPORT has their data returned, these data are just pilled up byte-by-byte into the
STATUS_REPORT. User has to separate them by his knowledge about which command gets which bytes back.

For the above example, its status report should look like this(suppose the P1's data is 0x65):

0xA5 0x00 0x65
 |Lead Code| status |P1 data |

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

There are another kind of usage of the IN/OUT report which carries pure data, the DATA_REPORT.

DATA_REPORT format:

Data, data ... ,
 |<--- 64 bytes --->|

Large amount of data can be sent from PC to device through multiple "OUT" DATA_REPORT by
executing the "CmdLoadReportN" command. The exact amount of DATA_REPORT (maximum number is 12)
this command expects should be followed. All data (64*12=768 bytes maximum) transferred were saved in the
USB2Any's page buffer(in XDATA, start from address 0x00C0) for later use.

The following example send one IC page(128 bytes, two reports) of data to the device, the
COMMAND_REPORT will be look like:

0x5A 0xA5 0x0B 02 00
|Lead Code |CmdLoadReportN |#Report | End Code |

after this COMMAND_REPORT was sent out, two DATA_REPORT must follows:

Data, data ... ,

Data, data ... ,

Then the STATUS_REPORT can be read back.

The device's data can also be read massively and send back to the PC through multiple IN
DATA_REPORT by executing "CmdSPI0ReadReportL” or "CmdSMB0ReadReportL" command. The user
should extract the exact amount of report before getting the final STATUS_REPORT.

The following example read 0x0100 reports back from a SPI device, the COMMAND_REPORT is like:

0x5A 0xA5 0x15 0x01 0x00 00
|Lead Code | CmdSPI0ReadReportL |HI byte |LO byte |End Code|

after the COMMAND_REPORT was sent out, the 0x0100 data reports has to be read:

Data, data ... ,
...

Data, data ... ,

then the final STATUS_REPORT can be read.

When any command in one COMMNAD_REPORT fails, the whole report will be aborted immediately
and the returned STATUS_REPORT will show its error location. The followings are those commands which
can possibly induce an error and was indicated by an [Err] label in its command description:

 CmdSMB0WriteN and CmdSMB0UnloadN : error when ACK bit check fails
 CmdWaitWIPL : error when the WIP bit of the status register in a SPI flash device doesn't return to its
 normal status within the timeout period.
 CmdADC0Get, SPP/EPP strobed read/write and “wait bit” commands : error on 10ms timeout.
 CmdSFRWrite, CmdPBitSet, CmdPBitClr: access to an invalid address.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

4.0 Host API(v1.01):

int OpenU2A(void);
Find an USB2Any device on the PC. If there is one and was opened successfully, it will return a zero.

Also the maximum wait time for read/write a report was set to 5 seconds.

int CloseU2A(void);
Close the opened USB2Any device. If closed successfully, it will return a zero.

int ReadReport(char *ptr);
Read an IN report and stored at the buffer pointed to by the ptr pointer. The report can be a

DATA_REPORT or a STATUS_REPORT, depends on commands sent in the COMMAND_REPORT. The
buffer must be 64 bytes long. If read successfully, it will return a zero.

int WriteReport(char *ptr);
Write an OUT report with data stored at the buffer pointed to by the ptr pointer. This report can be a

DATA_REPORT or a COMMAND_REPORT. The buffer must be 64 bytes long. If write successfully, it will
return a zero.

void SetMaxWaitTime(unsigned int ms);
Set the maximum wait time(in mS unit) for report read/write to complete.

5. Device Command List(v1.10):
Each command was listed below in “CmdName(Value) [+ para + para + ..], NumBytes, [Err]” format:

CmdName: the name which should be used in the programming, rather than using its value directly.
Value: a number which represents this command.
[para]: the parameters this command requires. It is optional.
NumBytes: how many bytes this command will take totally, including its parameters.
[Err]: this command may cause error during its execution. If it happens, will abort the whole

 command report execution.

5.0.1 General purpose commands:

CmdGetVer(0x01), 1 byte
Get the USB2Any two bytes firmware version and returned in the STATUS_REPORT. A value of 0x0100

means version 01.00.

Command_report: 0x01

CmdPowerOn(0x02), 1 byte
Turn on 3.3V/180mA voltage regulator to supply power to the external circuit.

Command_report: 0x02

CmdPowerOff(0x03), 1 byte
Turn off 3.3V/180mA voltage regulator. This pin has a 1K//2.2uF pull-down.

Command_report: 0x03 ...

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

CmdSFRRead(0x04) + reg, 2 bytes
Read SFR register and store it in the STATUS_REPORT. The "reg" should be between 0x80~0xFF. For a

non-exist register, a 0xFF will always be returned.

Command_report: 0x04 reg

CmdSFRWrite(0x05) + data + reg, 3 bytes, [Err]
Write data to SFR register. The "reg" should be between 0x80~0xFF and exists. For value below 0x80, a

non-exist SFR or a forbidden SFR(see below), an error will occurs.

Some of the USB2Any related SFR registers shouldn't be altered or the system may be crashed. These
registers are listed here for reference:

SYSTEM registers: SP, RSTSRC.
INTERRUPT registers: IE, IP, EIE1, EIP1, EIE2, EIP2, ITO1CF.
OSCILLATORS registers: OSCXCN, OSCICN, OSCICL, CLKSEL, CLKMUX.
USB registers: USB0ADR, USB0DAT.

Command_report: 0x05 data reg

CmdSetPWidth(0x06) + N, 2 bytes
Set the pulse width to (41.6nS * (17 + (N - 1) * 4)) where N is 0~255(0 means 256). The minimum width

is ~0.71uS(default). The TCK(P2.0), nSTB(P2.0), nDSTB(P2.1) and nASTB(P2.3) pulses will be influenced.

Command_report: 0x06 N

CmdWaitN100uS(0x07) + N, 2 bytes
Wait N number of 100uS. N is 0 to 255(0 means 256).

Command_report: 0x07 N

CmdSelEPP(0x08), 1 byte
Set USB2Any to EPP mode(also the power-on default). Both port0 and port1 are open-drain pull-up. No

SPI, I2C or UART functions are available. Port2 bit0~3 is push-pull output low, bit4~7 is open-drain pull-up.

Command_report: 0x08

CmdSelSPP(0x09), 1 byte
Set USB2Any to SPP mode. Port 1 is push-pull output low. Port 0 is open-drain pull-up. No SPI, I2C or

UART functions are available. Port2 bit0~3 is push-pull output low, bit4~7 is open-drain pull-up.

Command_report: 0x09

CmdSelSIO(0x0A), 1 byte
Set USB2Any to SIO mode. Port 1 is open-drain pull-up. Port 0 works for SPI, I2C and UART functions.

Port2 bit0~3 is push-pull output low, bit4~7 is open-drain pull-up.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

CmdLoadReportN(0x0B) + #Report, 2 bytes
Store massive data into USB2Any's page buffer(in XDATA, start at 0x00C0, 768 bytes max.) through

multiple OUT DATA_REPORT. The number of reports is 1 to 12. After this command was completed, the
page buffer pointer will be reset to point to the beginning of this buffer for later usage by commands
“CmdSPI0UnloadN” and “CmdSMB0UnloadN”.

Command_report: 0x0B #Report

5.0.2 SPI commands:

CmdSPI0SetRate(0x0C) + value, 2 bytes
Set the SPI clock by the following formula. The "value" will be loaded into the 8051's SPI0CKR register.

 Fsck=24MHz/(2*(SPI0CKR+1)). The default SCK is 2MHz with SPI0CKR=5.

Command_report: 0x0C value

CmdSPI0En(0x0D), 1 byte
Set SPI mode to 4-wire single-Master, CKPHA=CKPOL=0, Fsck=2MHz(@24MHz SYSCLK) and enable

it. The related 8051's registers were set to SPI0CKR=5, SPI0CFG=0x40, SPI0CN=0x0F

Command_report: 0x0D

CmdSPI0Dis(0x0E), 1 byte
Disable SPI. This command only clears the SPIEN bit of the SPI0CN.

Command_report: 0x0E

CmdSPI0CS0_Byte(0x0F) + data, 2 bytes
Set NSS to 0 to enable the SPI device and then send out the data byte.

Command_report: 0x0F data

CmdSPI0CS1(0x10), 1 byte
Wait for SPIF=1 and then set NSS to 1 to disable the SPI device. SPIF is bit 7 of the control register

SPI0CN.

CmdSPI0WriteN(0x11) + N + data1 + data2 + ... dataN, N+2 bytes
Write N bytes of data to SPI slave. The length N should be limited not to overflow this command report.

Command_report: 0x11 N data1 Data2 dataN

CmdSPI0ReadN(0x12) + N, 2 bytes
Read N bytes of data from SPI slave. The data were stored in the STATUS_REPORT returned after this

command report. The length N should be limited not to overflow this status report.

Command_report: 0x12 N

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

CmdWaitWIPL(0x13) + Len_Hi + Len_Lo, 3 bytes, [Err]
Wait for WIP bit to be cleared in a timeout period of (Len * 10) ms. For example, if Len_Hi=0x01 and

Len_Lo=0x20, the timeout period will be 288(0x0120) x10ms = 2880ms. COMMAND_REPORT was aborted
if timeout occurs. This command is only meaningful to some serial flash devices.

Command_report: 0x13 Len_Hi Len_Lo

CmdSPI0UnloadN(0x14) + N, 2 bytes
Write N bytes(usually one page) of data stored in the USB2Any's page buffer to SPI slave, start from the

address pointed to by the page buffer pointer. The pointer will be advanced to point to the next available data
after this command completed. N is 0 to 255(0 means 256).

Command_report: 0x14 N

CmdSPI0ReadReportL(0x15) + Len_Hi + Len_Lo, 3 bytes
Read "Len" number of reports of data from SPI slave and send back to PC through IN DATA_REPORT.

The "Len" is a 16bit value. If Len=0x0100, then 256 reports(64 x 256 = 16,384 bytes) will be sent back.

Command_report: 0x15 Len_Hi Len_Lo

5.0.3 I2C commands:
Note: Important! The SCL and SDA pin should be pull-up externally by a 2.7K ~ 5.6K resistor.

CmdSMB0SetRate(0x16) + value, 2 bytes
Set the bit rate(at 66/33 duty cycle) of I2C by equation BitRate=Ft2_overflow/3. The "value" was loaded

into timer2's TMR2RLH to decide its overflow distance. The default is 100KHz (value=0xB0, 80 clocks to
overflow) with timer2 running at 24MHz. Change the value to 0x60 will slow down clock to 50KHz.

Command_report: 0x16 value

CmdSMB0En(0x17), 1 byte
Set SMB0CF=0xD2 to initialize the SMB0 function and run Timer2.

Command_report: 0x17

CmdSMB0Dis(0x18), 1 byte
Set SMB0CF=0x52, SMB0CN=0 to stop the SMB0 function and Timer2.

Command_report: 0x18

CmdSMB0Start(0x19), 1 byte
Set STA=1 to trigger a "START" condition.

Command_report: 0x19

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

CmdSMB0ReStart(0x48), 1 byte
Set STA=1 and SI=0 to re-trigger a "START" condition.

Command_report: 0x48

This command is available in firmware version 1.10 and after. Before this version, user can emulate it by
using CmdSFRWrite(0x05) command to write data 0x22 to register 0xC0.

.... 0x05 0x22 0xC0

CmdSMB0Stop(0x1A), 1 byte
Set STO=1 and SI=0 to trigger a "STOP" condition. Usually used to end an I2C write session.

Command_report: 0x1A

CmdSMB0NACKStop(0x1B), 1 byte
Clear ACK(a NACK condition) and jump to “CmdSMB0Stop”. Usually used to end an I2C read session.

Command_report: 0x1B

CmdSMB0ReadN(0x1C) + N, 2 bytes
Read N bytes of data from I2C slave and stored in the STATUS_REPORT returned after this command

report. Set ACK condition after each byte was read. The N should be limited not to overflow this status report.

Command_report: 0x1C N

CmdSMB0Read_NACK(0x1D), 1 byte
Read the last byte of data and ended with a NACK condition(ACK=0). Usually a “CmdSMB0Stop”

command will follow to end the read session.

Command_report: 0x1D

There are two ways to end an I2C read session. Suppose you have N bytes to read, one is using
{CmdSMB0ReadN, N-1} + CmdSMB0Read_NACK + CmdSMB0Stop

.... 0x1C N-1 0x1D 0x1A

The other is using {CmdSMB0ReadN, N} + CmdSMB0NACKStop. It is a little bit informal way.

.... 0x1C N 0x1B

CmdSMB0WriteN(0x1E) + N + data1 + data2 ...+ dataN, N+2 bytes, [Err]
Write N bytes of data to I2C slave. Check ACK after each byte written and abort immediately if not an

ACK. The length N should be limited not to overflow this command report.

Command_report: 0x1E N data1 Data2 dataN

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

CmdSMB0UnloadN(0x1F) + N, 2 bytes, [Err]
Write N bytes of data(usually one page) stored in the USB2Any's page buffer to I2C slave, start from the

address pointed to by the page buffer pointer. The pointer will be advanced to next available data after this
command completed. Check ACK after each data written and abort immediately if it is not an ACK. N is 0 to
255 (0 means 256).

Command_report: 0x1F N

CmdSMB0ReadReportL(0X20) + Len_Hi + Len_Lo, 3 bytes
Read "Len" number of reports of data from I2C slave and send back to PC through IN DATA_REPORT.

The "Len" is a 16bit value.

Command_report: 0x20 Len_Hi Len_Lo

5.0.4 SPP/EPP Port I/O commands:
Note1. Pulse are generated by toggling bit. It should be initialized to a proper level to get a correct direction.
Note2. Port access can be completed through SFR read/write command. Their address was listed below:
 Port's data: P0=0x80, P1=0x90, P2=0xA0.
 Port's output configuration: P0MDOUT=0xA4, P1MDOUT=0xA5, P2MDOUT=0xA6.
 1 for push-pull, 0 for open-drain.

CmdPBitSet(0x21) + bit, 2 byes, [Err]
Set bit of port P0, P1 and P2. The valid bit address should be within 0x80~0x87, 0x90~0x97, 0xA0~0xA7.

Invalid address will cause an error.

CmdPBitClr(0x22) + bit, 2 bytes, [Err]
Clear bit of port P0, P1 and P2. The valid bit address should be within 0x80~0x87, 0x90~0x97,

0xA0~0xA7. Invalid address will cause an error.

CmdStbWrite(0x23) + data, 2 bytes, [Err] // for SPP mode
Wait for BUSY=0(P0.7) with 10ms timeout, write "data" to Port1, toggle nSTB(P2.0) for a pulse which its

width can be set through command "CmdSetPWidth". The default pulse width is ~0.71uS.

Command_report: 0x23 data

CmdStbWriteN(0x24) + N + data1 + data2 ...+ dataN, N+2 bytes, [Err] // for SPP mode
Write N bytes of data through repeat calling the command "CmdStbWrite". The length N should be limited

not to overflow this command report.

Command_report: 0x24 N data1 Data2 dataN

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

CmdDStbWrite(0x25) + data, 2 bytes, [Err] // for EPP mode Data Write
Set nWrite=0(P2.0), Change Port 1 to push-pull mode, wait for WAIT=0(P0.7) with 10ms timeout, write

"data" to Port 1, toggle nDSTB(P2.1) for a pulse which its width can be set by command “CmdSetPWidth”,
Change Port 1 back to open-drain pull-up mode, and then set nWrite=1. The default pulse width is ~0.71uS.

Command_report: 0x25 data

CmdDStbRead(0x26), 1 byte, [Err] // for EPP mode Data Read
Wait for WAIT=0(P0.7) with 10ms timeout, toggle nDSTB(P2.1) for a pulse which its width can be set by

command “CmdSetPWidth”, read data from Port 1 just before the pulse ends, and store data into the
STATUS_REPORT. If timeout error occurs, a dummy data will be stored in the STATUS_REPORT. The
default pulse width is ~0.71uS.

CmdAStbWrite(0x27) + data, 2 bytes, [Err] // for EPP mode Address Write
It is same as the above command “CmdDStbWrite” except that the strobed pin is nASTB(P2.3).

CmdAStbRead(0x28), 1 byte, [Err] // for EPP mode Address Read

It is same as the above command “CmdDStbRead” except that the strobed pin is nASTB(P2.3).

CmdWaitBit0(0x29) + MASK, 2 bytes, [Err]
Wait for all the bits in {P0.7, P0.6, P0.5, P0.4, P0.3, P2.6, P2.5, P2.4}, which its relative bit position in the

MASK byte was set, to become zero. This wait has a 10ms timeout and will cause error if it occurs.
For example, waiting for both bit P0.6 and P2.4 to become zero, the MASK should be set to 0b01000001.

Command_report: 0x29 MASK

CmdWaitBit1(0x2A) + MASK, 2 bytes, [Err]
Same as the above command except wait for bits to become one.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

5.0.5 JTAG commands:
Note: The TCK pulse was generated through bit toggle so a correct initial value should be set before use. Its
 default pulse width is ~0.71uS and can be changed by command "CmdSetPWidth".

CmdJTAGReset(0x2B), 1 byte
Go to "Run-Test/Idle" state.

CmdTCK_TMS1(0x2C), 1 byte
Set TMS=1 and send out one TCK pulse. TDI is intact and TDO is ignored.

CmdTCK_TMS0(0x2D), 1 byte
Set TMS=0 and send out one TCK pulse.

CmdTDI1(0x2E), 1 byte
Set TDI=1.

CmdTDI0(0x2F), 1 byte
Set TDI=0.

CmdTCKsL(0x30) + Len_Hi + Len_Lo, 3 bytes
Send "Len" number of TCK pulses. The TDI and TMS is intact and the TDO is ignored.

CmdBitsRWExitL(0x31) + Len_Hi + Len_Lo + data1 + data2 + ... + dataN, N+3 bytes
Write(to TDI) “Len” number of bits which were embedded in the COMMAND REPORT and, at the same

time, read(from TDO) the same length of data back and stored in the STATUS REPORT. The first bit is bit 0 of
the first byte, the second bit is bit1, and so on. Each bit was read/write before TCK pulse starts and the last TCK
pulse will go with TMS=1 so that it will exit from the current state. Usually this command was invoked when
JTAG is in the "Shift-DR" or “Shift-IR” state, and it will end in the “Exit1-DR” or “Exit1-IR” state.

Command_report: 0x31 Len_Hi Len_Lo Data1 Data2 dataN

Note: How many bits a command report can carry depends on how many commands it has. The largest space
 left for data is when this command is the only one in a command report. So “the report length 64 minus
 3 bytes of overhead(2 lead codes, 1 end code), minus 3 bytes of command itself” is, 58 bytes or 464 bits.

CmdBitsRWL(0x32) + Len_Hi + Len_Lo + data1 + data2 + ... + dataN, N+3 bytes
Same as the above command except that the last TCK pulse will keep the TMS intact to remain in its

current state.

5.0.6 ADC commands:

CmdADC0En(0x33), 1 byte
Set the P2.5 and P2.6 to analog input. The reference voltage is from VDD, the conversion's code format is

left-justified, the SAR clock is 2MHz.

CmdADC0Dis(0x34), 1 byte
Reset the P2.5 and P2.6 to open-drain pull-up input. All ADC related registers reset to its power-on status.

CmdADC0SetAMX(0x35) + AMX0P + AMX0N, 3 bytes

Select the analog input channel.
Set AMX0P=0x0E to select P2.6 as the input channel, or AMX0P=0x0D to select P2.5. Always set the

AMX0N=0x1F for single-ended mode.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

CmdADC0Get(0x36), 1 byte, [Err]

Start a software trigger conversion. The result ADC value(10 bits) will be stored in the
STATUS_REPORT in two adjacent bytes. Bit9~2 is the first byte and bit1~0 was left-justified in the second
byte.

5.0.7 RS232(TTL) commands:

Cmd232En(0x37), 1 byte
Enable RS232 with default baud rate 115200. The SIO mode has to be selected to make it works.

Cmd232Read_Flag(0x38), 1 byte
Check if there is a data available and return it in the STATUS_REPORT. If there is a data, the flag 0xFF

was stored next to the status byte and then the data byte follows. If not, only the flag 0x00 was stored.

Command_report: 0x38

Status_report(has data): 0xA5 0x00 0xFF data
Note: There is a bug in V1.00 where the flag 0xFF actually is 0x5A. User should check this flag for
zero/non-zero to decide if there is data available.

Status_report(no data): 0xA5 0x00 0x00

Cmd232ReadN(0x39) + N, 2 bytes
Read N bytes of data and stored in the STATUS_REPORT returned after this command report. The length

N should be limited not to overflow this status report.

Cmd232WriteN(0x3A) + N + data1 + data2 + ... + dataN, N+2 bytes
Write N bytes of data. The length N should be limited not to overflow this command report.

Cmd232SetBaud(0x3B) + data0 + data1, 3 bytes
Load data0 into CKCON and data1 into TH1 to set the RS232 baud rate. The default baud rate is 115200.

Below are values(data0, data1) for different baud rate:
0x22, 0x98 for 2400 Baud, 0x20, 0x30 for 4800, 0x20, 0x98 for 9600, 0x21, 0x64 for 19200,
0x21, 0xB2 for 38400 and 0x28, 0x98 for 115200.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

5.0.8 Power user commands:

CmdUserReadPage(0x3C), 2 bytes
Note! this command is obsolete since v1.20. It does nothing now, not any data will be send back.

Read 512 bytes from codes space. The page number should be even, for example, $28 for start address
$2800. There are 8 IN DATA_REPORT data waiting for PC to read back after this command was executed.
This command is mainly for user's code verification purpose.

Command_report: 0x3C page#

CmdUserWritePage(0x3D), 2 bytes
The code page which must start at an even page number, for example $28 for start address $2800, was

erased first and then 512 bytes of user code was written. These codes must be packed into 8 OUT
DATA_REPORT and sent to USB2Any from PC during this command execution.

Command_report: 0x3D page#

User defined commands.
CmdUser0(0x3E), CmdUser1(0x3F), CmdUser2(0x40), CmdUser3(0x41), CmdUser4(0x42),
CmdUser5(0x43), CmdUser6(0x44), CmdUser7(0x45), CmdUser8(0x46), CmdUser9(0x47)

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

6.0 Examples:
The main file is USB2Any.cpp. For each test, the last “#include” statement should be modified to the right

filename. For example, on testing I2C, this statement should be “#include ConsI2C.cpp”.

6.0.1 I2C
Description:

Download/Upload AT24C04 or AT24C512 EEPROM from/to a binary file. This example shows two ways
on handling between different page size device, one is for size smaller than 64 bytes which a whole page can be
embedded into one command report, the other is for size larger than or equal to 64 bytes which the page data
was sent separately through multiple data reports.

Circuit:

Required files: U2ACmds.h, ConsComm.cpp, ConsI2C.cpp, USB2Any.cpp

6.0.2 SPI:
Description:

Download/Upload MX25L1005 or MX25L4005 serial flash from/to a binary file.

Circuit:Required files: U2ACmds.h, ConsComm.cpp, ConsSPI.cpp, USB2Any.cpp

6.0.3 EPP:
Description:

Using commands “CmdDStbWrite” and “CmdDStbRead” to write/read a 16x2 character LCD module.

Circuits:

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Required files: U2ACmds.h, ConsComm.cpp, ConsEPP.cpp, USB2Any.cpp

6.0.4 GPIO/ADC:
Description:

A simple digit I/O example to handle switches and LED lamp, and a single-ended analog input.

Circuits:

Required files: U2ACmds.h, ConsComm.cpp, ConsIO.cpp, USB2Any.cpp

6.0.5 JTAG:
Description:

Find out how many devices are in the JTAG chain and read their ID. The device used here for testing is a
XCR3128XL-VQ100 CPLD.

Circuits:
The wiring is straightforward.

Required files: U2ACmds.h, ConsComm.cpp, ConsJTAG.cpp, USB2Any.cpp

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com
http://www.pdffactory.com

Document Revision History:

v1.20
1. For CmdSMB0En(0x17) and CmdSMB0Dis(0x18), the value in register SMB0CF should be 0xD2 and

0x52. It's a typing error. --(06MAY2014)
2. The user program code space was increased from 512 bytes ($2E00~$2FFF) to 2048 bytes ($2800~

$2FFF).
3. CmdUserWritePage(0x3D) was modified to take one parameter for its start page number(must be even),

instead of fixing at page $2E. For example, if the start address is $2800, then this byte will be $28 and
the address $2800~29FF were processed. Note: this command still only process 512 bytes at a time, so
multiple commands was required if larger size need to be written.

4. Command CmdUserReadPage(0x3C) is obsolete for user code security reason. If user need it, he
should implement it in his own command(refer to file user.asm).

5. Add gboot, a USB HID Bootloader. (http://gglabs.us/node/3)

v1.10
1. Add command CmdSMB0ReStart(0x48) -- (13JAN2013)

v1.00 The original version.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://gglabs.us/node/3)
http://www.pdffactory.com
http://www.pdffactory.com

